3.17 \(\int \frac{\sin ^3(a+b \log (c x^n))}{x^2} \, dx\)

Optimal. Leaf size=158 \[ -\frac{\sin ^3\left (a+b \log \left (c x^n\right )\right )}{x \left (9 b^2 n^2+1\right )}-\frac{6 b^2 n^2 \sin \left (a+b \log \left (c x^n\right )\right )}{x \left (9 b^4 n^4+10 b^2 n^2+1\right )}-\frac{6 b^3 n^3 \cos \left (a+b \log \left (c x^n\right )\right )}{x \left (9 b^4 n^4+10 b^2 n^2+1\right )}-\frac{3 b n \sin ^2\left (a+b \log \left (c x^n\right )\right ) \cos \left (a+b \log \left (c x^n\right )\right )}{x \left (9 b^2 n^2+1\right )} \]

[Out]

(-6*b^3*n^3*Cos[a + b*Log[c*x^n]])/((1 + 10*b^2*n^2 + 9*b^4*n^4)*x) - (6*b^2*n^2*Sin[a + b*Log[c*x^n]])/((1 +
10*b^2*n^2 + 9*b^4*n^4)*x) - (3*b*n*Cos[a + b*Log[c*x^n]]*Sin[a + b*Log[c*x^n]]^2)/((1 + 9*b^2*n^2)*x) - Sin[a
 + b*Log[c*x^n]]^3/((1 + 9*b^2*n^2)*x)

________________________________________________________________________________________

Rubi [A]  time = 0.0468833, antiderivative size = 158, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.118, Rules used = {4487, 4485} \[ -\frac{\sin ^3\left (a+b \log \left (c x^n\right )\right )}{x \left (9 b^2 n^2+1\right )}-\frac{6 b^2 n^2 \sin \left (a+b \log \left (c x^n\right )\right )}{x \left (9 b^4 n^4+10 b^2 n^2+1\right )}-\frac{6 b^3 n^3 \cos \left (a+b \log \left (c x^n\right )\right )}{x \left (9 b^4 n^4+10 b^2 n^2+1\right )}-\frac{3 b n \sin ^2\left (a+b \log \left (c x^n\right )\right ) \cos \left (a+b \log \left (c x^n\right )\right )}{x \left (9 b^2 n^2+1\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sin[a + b*Log[c*x^n]]^3/x^2,x]

[Out]

(-6*b^3*n^3*Cos[a + b*Log[c*x^n]])/((1 + 10*b^2*n^2 + 9*b^4*n^4)*x) - (6*b^2*n^2*Sin[a + b*Log[c*x^n]])/((1 +
10*b^2*n^2 + 9*b^4*n^4)*x) - (3*b*n*Cos[a + b*Log[c*x^n]]*Sin[a + b*Log[c*x^n]]^2)/((1 + 9*b^2*n^2)*x) - Sin[a
 + b*Log[c*x^n]]^3/((1 + 9*b^2*n^2)*x)

Rule 4487

Int[((e_.)*(x_))^(m_.)*Sin[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_), x_Symbol] :> Simp[((m + 1)*(e*x)
^(m + 1)*Sin[d*(a + b*Log[c*x^n])]^p)/(b^2*d^2*e*n^2*p^2 + e*(m + 1)^2), x] + (Dist[(b^2*d^2*n^2*p*(p - 1))/(b
^2*d^2*n^2*p^2 + (m + 1)^2), Int[(e*x)^m*Sin[d*(a + b*Log[c*x^n])]^(p - 2), x], x] - Simp[(b*d*n*p*(e*x)^(m +
1)*Cos[d*(a + b*Log[c*x^n])]*Sin[d*(a + b*Log[c*x^n])]^(p - 1))/(b^2*d^2*e*n^2*p^2 + e*(m + 1)^2), x]) /; Free
Q[{a, b, c, d, e, m, n}, x] && IGtQ[p, 1] && NeQ[b^2*d^2*n^2*p^2 + (m + 1)^2, 0]

Rule 4485

Int[((e_.)*(x_))^(m_.)*Sin[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[((m + 1)*(e*x)^(m +
 1)*Sin[d*(a + b*Log[c*x^n])])/(b^2*d^2*e*n^2 + e*(m + 1)^2), x] - Simp[(b*d*n*(e*x)^(m + 1)*Cos[d*(a + b*Log[
c*x^n])])/(b^2*d^2*e*n^2 + e*(m + 1)^2), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b^2*d^2*n^2 + (m + 1)^2,
 0]

Rubi steps

\begin{align*} \int \frac{\sin ^3\left (a+b \log \left (c x^n\right )\right )}{x^2} \, dx &=-\frac{3 b n \cos \left (a+b \log \left (c x^n\right )\right ) \sin ^2\left (a+b \log \left (c x^n\right )\right )}{\left (1+9 b^2 n^2\right ) x}-\frac{\sin ^3\left (a+b \log \left (c x^n\right )\right )}{\left (1+9 b^2 n^2\right ) x}+\frac{\left (6 b^2 n^2\right ) \int \frac{\sin \left (a+b \log \left (c x^n\right )\right )}{x^2} \, dx}{1+9 b^2 n^2}\\ &=-\frac{6 b^3 n^3 \cos \left (a+b \log \left (c x^n\right )\right )}{\left (1+10 b^2 n^2+9 b^4 n^4\right ) x}-\frac{6 b^2 n^2 \sin \left (a+b \log \left (c x^n\right )\right )}{\left (1+10 b^2 n^2+9 b^4 n^4\right ) x}-\frac{3 b n \cos \left (a+b \log \left (c x^n\right )\right ) \sin ^2\left (a+b \log \left (c x^n\right )\right )}{\left (1+9 b^2 n^2\right ) x}-\frac{\sin ^3\left (a+b \log \left (c x^n\right )\right )}{\left (1+9 b^2 n^2\right ) x}\\ \end{align*}

Mathematica [A]  time = 0.334706, size = 125, normalized size = 0.79 \[ \frac{-3 b n \left (9 b^2 n^2+1\right ) \cos \left (a+b \log \left (c x^n\right )\right )+3 \left (b^3 n^3+b n\right ) \cos \left (3 \left (a+b \log \left (c x^n\right )\right )\right )+2 \sin \left (a+b \log \left (c x^n\right )\right ) \left (\left (b^2 n^2+1\right ) \cos \left (2 \left (a+b \log \left (c x^n\right )\right )\right )-13 b^2 n^2-1\right )}{4 x \left (9 b^4 n^4+10 b^2 n^2+1\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b*Log[c*x^n]]^3/x^2,x]

[Out]

(-3*b*n*(1 + 9*b^2*n^2)*Cos[a + b*Log[c*x^n]] + 3*(b*n + b^3*n^3)*Cos[3*(a + b*Log[c*x^n])] + 2*(-1 - 13*b^2*n
^2 + (1 + b^2*n^2)*Cos[2*(a + b*Log[c*x^n])])*Sin[a + b*Log[c*x^n]])/(4*(1 + 10*b^2*n^2 + 9*b^4*n^4)*x)

________________________________________________________________________________________

Maple [F]  time = 0.063, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( \sin \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) \right ) ^{3}}{{x}^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(a+b*ln(c*x^n))^3/x^2,x)

[Out]

int(sin(a+b*ln(c*x^n))^3/x^2,x)

________________________________________________________________________________________

Maxima [B]  time = 1.28572, size = 1343, normalized size = 8.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b*log(c*x^n))^3/x^2,x, algorithm="maxima")

[Out]

1/8*((3*(b^3*cos(6*b*log(c))*cos(3*b*log(c)) + b^3*sin(6*b*log(c))*sin(3*b*log(c)) + b^3*cos(3*b*log(c)))*n^3
+ (b^2*cos(3*b*log(c))*sin(6*b*log(c)) - b^2*cos(6*b*log(c))*sin(3*b*log(c)) + b^2*sin(3*b*log(c)))*n^2 + 3*(b
*cos(6*b*log(c))*cos(3*b*log(c)) + b*sin(6*b*log(c))*sin(3*b*log(c)) + b*cos(3*b*log(c)))*n + cos(3*b*log(c))*
sin(6*b*log(c)) - cos(6*b*log(c))*sin(3*b*log(c)) + sin(3*b*log(c)))*cos(3*b*log(x^n) + 3*a) - 3*(9*(b^3*cos(4
*b*log(c))*cos(3*b*log(c)) + b^3*cos(3*b*log(c))*cos(2*b*log(c)) + b^3*sin(4*b*log(c))*sin(3*b*log(c)) + b^3*s
in(3*b*log(c))*sin(2*b*log(c)))*n^3 + 9*(b^2*cos(3*b*log(c))*sin(4*b*log(c)) - b^2*cos(4*b*log(c))*sin(3*b*log
(c)) + b^2*cos(2*b*log(c))*sin(3*b*log(c)) - b^2*cos(3*b*log(c))*sin(2*b*log(c)))*n^2 + (b*cos(4*b*log(c))*cos
(3*b*log(c)) + b*cos(3*b*log(c))*cos(2*b*log(c)) + b*sin(4*b*log(c))*sin(3*b*log(c)) + b*sin(3*b*log(c))*sin(2
*b*log(c)))*n + cos(3*b*log(c))*sin(4*b*log(c)) - cos(4*b*log(c))*sin(3*b*log(c)) + cos(2*b*log(c))*sin(3*b*lo
g(c)) - cos(3*b*log(c))*sin(2*b*log(c)))*cos(b*log(x^n) + a) - (3*(b^3*cos(3*b*log(c))*sin(6*b*log(c)) - b^3*c
os(6*b*log(c))*sin(3*b*log(c)) + b^3*sin(3*b*log(c)))*n^3 - (b^2*cos(6*b*log(c))*cos(3*b*log(c)) + b^2*sin(6*b
*log(c))*sin(3*b*log(c)) + b^2*cos(3*b*log(c)))*n^2 + 3*(b*cos(3*b*log(c))*sin(6*b*log(c)) - b*cos(6*b*log(c))
*sin(3*b*log(c)) + b*sin(3*b*log(c)))*n - cos(6*b*log(c))*cos(3*b*log(c)) - sin(6*b*log(c))*sin(3*b*log(c)) -
cos(3*b*log(c)))*sin(3*b*log(x^n) + 3*a) + 3*(9*(b^3*cos(3*b*log(c))*sin(4*b*log(c)) - b^3*cos(4*b*log(c))*sin
(3*b*log(c)) + b^3*cos(2*b*log(c))*sin(3*b*log(c)) - b^3*cos(3*b*log(c))*sin(2*b*log(c)))*n^3 - 9*(b^2*cos(4*b
*log(c))*cos(3*b*log(c)) + b^2*cos(3*b*log(c))*cos(2*b*log(c)) + b^2*sin(4*b*log(c))*sin(3*b*log(c)) + b^2*sin
(3*b*log(c))*sin(2*b*log(c)))*n^2 + (b*cos(3*b*log(c))*sin(4*b*log(c)) - b*cos(4*b*log(c))*sin(3*b*log(c)) + b
*cos(2*b*log(c))*sin(3*b*log(c)) - b*cos(3*b*log(c))*sin(2*b*log(c)))*n - cos(4*b*log(c))*cos(3*b*log(c)) - co
s(3*b*log(c))*cos(2*b*log(c)) - sin(4*b*log(c))*sin(3*b*log(c)) - sin(3*b*log(c))*sin(2*b*log(c)))*sin(b*log(x
^n) + a))/((9*(b^4*cos(3*b*log(c))^2 + b^4*sin(3*b*log(c))^2)*n^4 + 10*(b^2*cos(3*b*log(c))^2 + b^2*sin(3*b*lo
g(c))^2)*n^2 + cos(3*b*log(c))^2 + sin(3*b*log(c))^2)*x)

________________________________________________________________________________________

Fricas [A]  time = 0.509677, size = 321, normalized size = 2.03 \begin{align*} \frac{3 \,{\left (b^{3} n^{3} + b n\right )} \cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{3} - 3 \,{\left (3 \, b^{3} n^{3} + b n\right )} \cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) -{\left (7 \, b^{2} n^{2} -{\left (b^{2} n^{2} + 1\right )} \cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 1\right )} \sin \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}{{\left (9 \, b^{4} n^{4} + 10 \, b^{2} n^{2} + 1\right )} x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b*log(c*x^n))^3/x^2,x, algorithm="fricas")

[Out]

(3*(b^3*n^3 + b*n)*cos(b*n*log(x) + b*log(c) + a)^3 - 3*(3*b^3*n^3 + b*n)*cos(b*n*log(x) + b*log(c) + a) - (7*
b^2*n^2 - (b^2*n^2 + 1)*cos(b*n*log(x) + b*log(c) + a)^2 + 1)*sin(b*n*log(x) + b*log(c) + a))/((9*b^4*n^4 + 10
*b^2*n^2 + 1)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b*ln(c*x**n))**3/x**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (b \log \left (c x^{n}\right ) + a\right )^{3}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b*log(c*x^n))^3/x^2,x, algorithm="giac")

[Out]

integrate(sin(b*log(c*x^n) + a)^3/x^2, x)